

晶采光電科技股份有限公司 晶米光電科技股份有R AMPIRE AMPIRE CO., LTD.

SPECIFICATIONS FOR LCD MODULE

CUSTOMER	
CUSTOMER PART NO.	
AMPIRE PART NO.	AR-09664CCJQW-00H
APPROVED BY	
DATE	

☑ Approved For Specifications

☐ Approved For Specifications & Sample

AMPIRE CO., LTD.

TOWER A, 4F, No.114, Sec. 1, HSIN-TAI 5th RD., HIS-CHIH, TAIPEI HSIEN, TAIWAN(R.O.C.)

台北縣汐止鎮新台五路一段114號4樓(東方科學園區A棟)

TEL:886-2-26967269, FAX:886-2-26967196 or 886-2-26967270

APPROVED BY	CHECKED BY	ORGANIZED BY

1

AMPIRE CO., LTD. Date: 2003/5/8

RECORD OF REVISION

Revision Date	Contents	Editor
2002/11/12	New Release	Eric
2002/11/13	Modify the interface define (Page 10) Modify the Timing Characteristics (Page 12)	Eric
2003/1/29	Modify LCM outline dimension (Page 20) Modify the LCM brightness to 45Cd/m2 (Page 6)	Eric Eric
2003/1/30	Modify the LCM brightness to 80 Cd/m2 (Page 6) Added the LED drawing (Page 21,22) Added the application circuit (Page 23) Modify the LCM thickness (Page20)	Eric Eric Eric Eric
2003/2/6	Change LED dice to 3pcs & I _{LED} to 20mA(Page5,6,10) Modify the LED drawing (Page 22)	Eric Eric
2003/2/7	Modify the LCM & LED drawing (Page 20,22)	Eric
2003/2/13	Modify the LCM & LED drawing (Page 20,22)	Eric
2003/2/25	Modify LED dice to 2pcs (7.2V, 20mA) (Page 5,6,10)	Eric
2003/3/5	Added 4-post on LED backlight & Modify LED interface to solder type (Page 20,21,22)	Eric
2003/3/7	Change LED dices to 3pcs (Page 5,6,20,21)	Patrick
2003/3/12	Modify the FPC outline dimension (Page 20,21,22)	Eric
2003/5/8	Modify the FPC contact length to 2.5 (Page 25,26)	Eric
	Added the power ON/OFF sequence (Page 17~20)	Eric

1 FEATURES

- (1) Color-STN 1" inch display module for Sub mobile-phones, or handy electrical equipments.
- (2) Construction: 1" Color-STN LCD, Flexible Print Board, White LED backlight and COG technology.
- (3) LCD type: 3.1 Color-STN 1 inch display, transflective, 12 O'clock, 1/64 Duty, 1/9 Bias.
 - 3.2 96(RGB)X64 dots Matrix.
 - 3.3 Narrow-contact ledge technique
 - 3.4 LCD controller is HD66768.
 - 3.5 Full 65K color display
- (4) Low cross talk by frame rate modulation
- (5) Direct data display with display RAM
- (6) Partial display function: You can save power by limiting the display space.
- (7) MPU interface: 8bit 80-series parallel and Three or Four-line Serial interface.
- (8) Abundant command functions:

Area scroll function

Display direction switching function

Power saving function

Date: 2003/5/8

Electric volume control function: you are able to program the temperature compensation function.

2 Mechanical specifications

Dimensions and weight

Item	Specifications	Unit
External shape dimensions	*1 27.2 (W) x 40.9 (H) x 2.7 (D)	mm
Pixel size	0.198 (W) x 0.20(H)	mm
Pixel pitch	0.21 (W) x 0.21(H)	mm
Active area	20.148 (W) x 13.43 (H)	mm
Viewing area	22.2 (W) x 15.5 (H)	mm
Weight	T.B.D.	g

^{*1.} This specification is about External shape on shipment from AMPIRE.

3 Absolute max. ratings and environment

3-1 Absolute max. ratings

Ta=25°C GND=0V

Item	Symbol	Min.	Max.	Unit	Remarks
Power supply voltage (1)	V _{CC} – GND	-0.3	+4.6	V	1,2
Power supply voltage (2)	Vcil	-0.3	+4.6	V	1,3
Power supply voltage (3)	VLPS – GND	-0.3	+17.5	V	1,4
Power voltage	LED-A – LED-K	-0.3	+5.5	V	
Input voltage	VIN	-0.3	V _{CC} +0.3	V	1

Notes:

3-2 Environment

Item	Specifications	Remarks
Storage temperature	Max. +80 °C Min. –30 °C	Note 1: Non-condensing
Operating temperature	Max. +70 °C Min20 °C	Note 1: Non-condensing

Note 1: $Ta \le +40^{\circ}C$ Max.85%RH

Ta>+40 °C The max. Humidity should not exceed the humidity with 40 °C

85%RH.

^{1.} If the LSI is used above these absolute maximum ratings, it may become permanently Damaged. Using the LSI within the following electrical characteristics limit is strongly Exceeded, the LSI will malfunction and caused poor reliability.

 $^{2.}V_{CC} \ge GND$ must be maintained.

^{3.} Vcil \geq GND must be maintained.

^{4.} VLPS ≧ GND must be maintained.

4 Electrical specifications

4-1 Electrical characteristics

In case except as specified elsewhere in these specifications GND=0V, V_{CC} = 3.0V, VLPS= 13.0V and Ta=25°C

Item	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	Applicable Pin
IC power voltage	V _{CC}		2.4	3.0	3.6	٧	Vcc *1
High-level input voltage	V _{IHC}		0.7 V _{CC}		V_{CC}	>	*2
Low-level input voltage	V _{ILC}		-0.3		0.15V _{CC}	>	*2
High-level output voltage	V _{OH}	I _{OH} =-0.1mA	0.75 V _{CC}	ı	1	>	*3
Low-level output voltage	V _{OL}	I _{OL} =+0.1mA	-	ı	0.15 V _{CC}	>	*3
Input leakage current	I _{LI}	V_{IN} = V_{DD} or V_{SS}	-1.0		1.0	uA	*2-
Consumption current	I _{CC}	Electric VR value = T.B.D	-	1.3	-	mA	*4
Consumption current of LED	I _{LED}	V _{LED} =10.8V	-	15		mA	

Note:

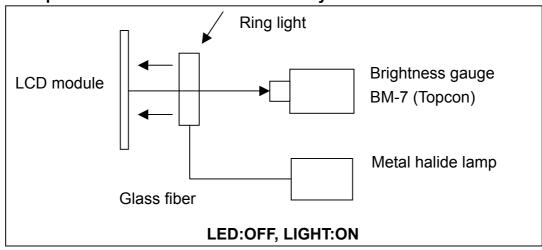
- 1. Operation is warranted if radical voltage fluctuations occur while MPU is in process of access.
- 2. D8 to D0 (Input mode), A0, CS, RD, WR, and RES.
- 3. D8 to D0 (Input and Output mode)
- 4. The consumption current value comes from the conditions that the display contents are all surface halftone display and the electric VR value is T.B.D (decimal).

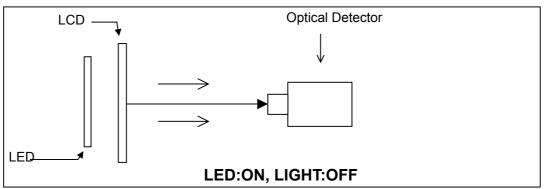
5 Optical characteristics

5-1 Optical characteristics

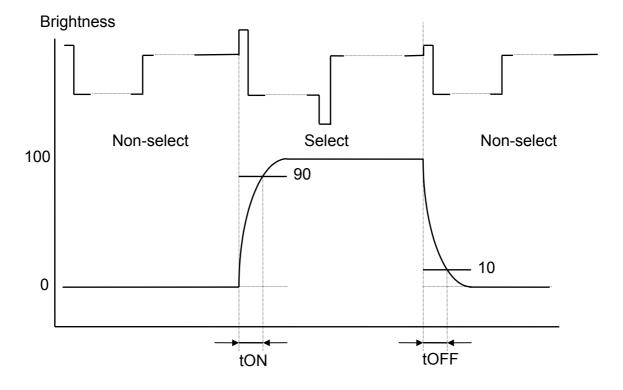
(1/64 Duty in case except as specified elsewhere $Ta = 25^{\circ}C$)

LED backlight transflective module:

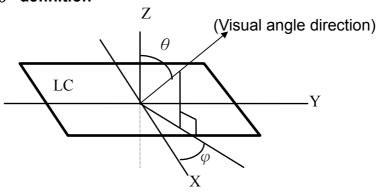

Item	Symbol	Mode	Min.	Std.	Max.	Unit	Conditions
	tON	-	-	125	190	ms	θ =0° , φ =0°
Response	tOFF	-	-	55	85	ms	When CR Max.
time	tON	-	-	1500	2300	ms	θ =0° , φ =0°
	tOFF	-	-	1100	1500	ms	-20°C When CR Max.
Contrast ratio	CR	Refl.	-	7	-		$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$ LED:OFF, LIGHT:ON
Contrast fatto	5	Trans.	-	30	-		θ =0°, φ =0° LED:ON, LIGHT:OFF
Visual angle range front	heta 1	Refl.	-30		30	De-	φ = 0°, CR \ge 1.5 LED:OFF, LIGHT:ON
and rear	0 1	Trans	-35		50	gree	φ = 0°, CR \ge 1.5 LED:ON, LIGHT:OFF
Visual angle range left and	heta 2	Refl.	-30		30	De-	φ =90°, CR \geq 1.5 LED:OFF LIGHT:ON
right	2	Trans	-40		40	gree	φ =90°, CR \geq 1.5 LED:ON, LIGHT:OFF
Visual angle direction priority				12:00			
Brightness				100 Min.		Cd/ m2	V _{LED} =10.8V(Typ.) 15mA Full White pattern


5-2 CIE (x, y) chromaticity (1/64 Duty Ta = 25° C)

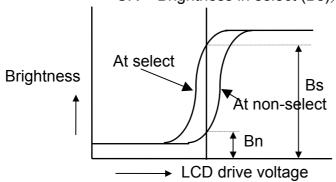
Item	Symbol		Conditions		
itom	Cymbol	Min.	Std.	Max.	Conditions
Red	х	-	T.B.D	-	θ =0°, φ =0°
1100	У	-	T.B.D	-	,,,
Green	х	-	T.B.D	-	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
	У	-	T.B.D	-	, ,
Blue	Х	ı	T.B.D	1	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
	У	-	T.B.D	-	, ,
White	х	- 1	T.B.D	- 1	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
	У	ı	T.B.D	ı	, ,


Item	Symbol	Min.	Std.	Max.	Conditions
Reflection	х	-	T.B.D	-	$\theta = 0^{\circ}$, $\varphi = 0^{\circ}$
Light source	у	-	T.B.D	-	,,

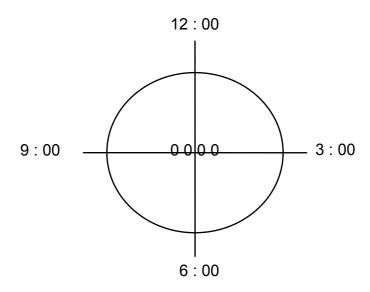
NOTE 1: Optical characteristic measurement system



NOTE 2: Response time definition


NOTE 3: $\varphi \cdot \theta$ definition

(6-o'clock visual angle direction)


NOTE 4: Contrast definition

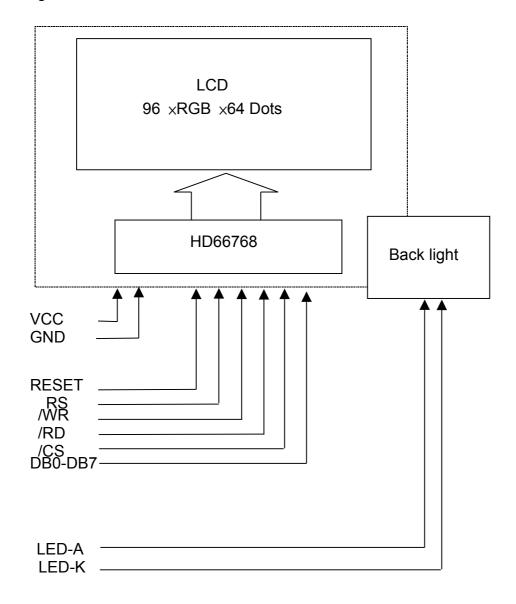
CR = Brightness in select (Bs) / Brightness in non-select (Bns)

NOTE 5: Visual angle direction priority

Date: 2003/5/8

8

6 Block Diagram


Display format: Color-STN transflective negative type

Display composition: 96 x RGB x 64 dots

Drive system: PWM grayscale drive.

Back light: White LED x 3

Block diagram

7 Interface specifications

Pin No.	Terminal	Functions			
1	RESET1	Res	et ter	minal	, active "L"
2	IM2	Select	MPL	J Inter	face mode:
	IIVIZ	IM2	IM1	IM0	MPU interface Mode
3	IM1	GND	VCC	VCC	80-system 8-bit bus interface
3	IIVI I	VCC	GND	ID	Clock synchronized serial interface (Three-lines)
4	IM0/ID	VCC	VCC	GND	Clock synchronized serial interface (four-lines)
5	DB7				
6	DB7	_			
7	DB5	-			Face a second construction of the face of the second construction of the se
	DB3 DB4	Det	- D	fa 0 la:	For a synchronous clock interface or unused pin, fixed to the VCC or VSS level.
8	DB3	4		for 8-bi s MPU	11,
10	DB3 DB2	00	Selles	SIVIFU	
11	DB2 DB1				For a synchronous clock interface, leave it open.
12	DB1	-			-
13	/RD	Poo	d ala	ok tor	Serial data input pin (SDI) minal, active "L" (80 series interface)
14		, , ,			
14	/WR, SCL	Write clock terminal, active "L" (80 series interface) Selects the register.			
15	RS			_	register, "H": Control register
16	/CS	Chip	sele	ct terr	minal, active "L"
17	OSC2	Com			ternal resistantes D. C. conillation
18	OSC1	Coni	nect a	an ext	ternal resistor for R-C oscillation.
19	V_{CC}	DOW/	or cu	nnly t	erminal
20	RV_{CC}	FOW	ei su	рріу і	emina
21	VciL	Pow	er su	pply f	or an internal power supply circuit.
22	AGND	GNE) for p	ower	supply circuit.
23	GND	GNE) pin 1	for log	gic circuit
24	Vci1		outs ir GND		al reference voltage generated between VciL
25	Vci2	Refe	erence	e volta	age of step up circuit 2.
26	VLPS				/ for LCD driver.
27	C22+	\	~ C+-		circuit is used. Connect on systemal acceptant
28	C22-	vvne	:11 StE	:p-up	circuit is used. Connect an external capacitor.
29	C21+	\ <i>\\</i> /b -	n C+-	n	airquit is used. Connect on systemal accessites
30	C21-	When Step-up ci			circuit is used. Connect an external capacitor.
31	C11+	\ <i>\\</i> /b -	n C+-	n	airquit is used. Connect on systemal accessites
32	C11-	When Step-up ci			circuit is used. Connect an external capacitor.

33	VREFH	Output terminal for LCD driving voltage regulator circuit. Leave it open when not using.
34	V1OUT	They are output from an internal operation amplifier when
35	V2OUT	using an internal operation amplifier.
36	V3OUT	Connect V1OUT and V5OUT to a capacitor for stabilization.
37	V4OUT	·
38	V5OUT	
39	CGND	GND pin for external capacitor and schottky diode. "GND"=0V
40	OGND	GND pin for an external thermistor circuit. "GND"=0V
41	VREFOUT	Outputs internal reference power supply voltage.
42	VREFLCD	Inputs reference voltage of LCD drive power supply.

LED backlight:

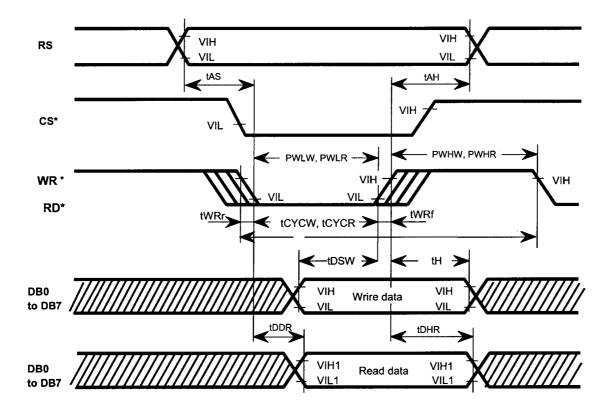
1	LED-A	Power input terminal for LED backlight (10.8V, 15mA)
2	LED-K	GND-terminal for LED backlight

8 Timing Characteristics

80-system Bus interface Timing Characteristics

Normal write mode (HWM=0)

 $(Ta=25^{\circ}C\ VCC\ =\ 2.4\sim3.6V)$

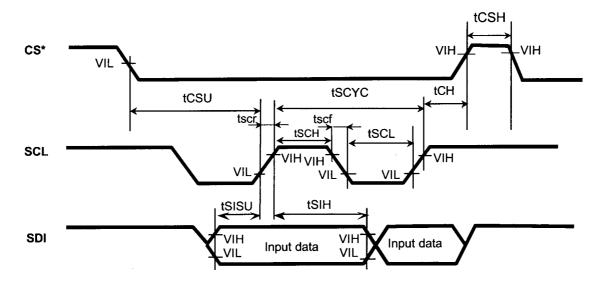

Item	Symbol	Conditions	MIN	MAX	Unit	
Due avole time	Write	t _{CYCW}		300	-	ns
Bus cycle time	Read	t _{CYCR}		500	-	ns
Write low-level puls	e width	PW_{LW}		40	-	ns
Read low-level puls	se width	PW_{LR}		250	-	ns
Write high-level pul	se width	PW_{HW}		100		ns
Read high-level pul	PW_{HR}		200		ns	
Write/Read rise/fall	t _{WRr} , t _{WRf}		-	25	ns	
Set up time (RS to	t _{AS}		10	-	ns	
Address hold time	t _{AH}		5	-	ns	
Write data set up tii	t _{DSW}		60	-	ns	
Write data hold time	t _H		15	-	ns	
Read data delay tin	t _{DDR}		-	200	ns	
Read data hold time	e	t _{DHR}		5	-	ns

High-speed Write mode (HWM=1)

 $(Ta=25^{\circ}C \ VCC = 2.4~3.6V)$

		1				
Item	Symbol	Conditions	MIN	MAX	Unit	
Due evele time	Write	t _{CYCW}		100	-	ns
Bus cycle time	Read	t _{CYCR}		500	-	ns
Write low-level puls	se width	PW_{LW}		40	-	ns
Read low-level puls	se width	PW_{LR}		250	-	ns
Write high-level pul	PW_{HW}		40		ns	
Read high-level pu	PW_{HR}		200		ns	
Write/Read rise/fall	t _{WRr,} t _{WRf}		-	25	ns	
Set up time (RS to	t _{AS}		10	-	ns	
Address hold time	t _{AH}		5	-	ns	
Write data set up ti	t _{DSW}		60	-	ns	
Write data hold time	e	t _H		15	-	ns
Read data delay tir	ne	t _{DDR}		-	200	ns
Read data hold tim	e	t _{DHR}		5	-	ns

Date: 2003/5/8 AMPIRE CO., LTD.

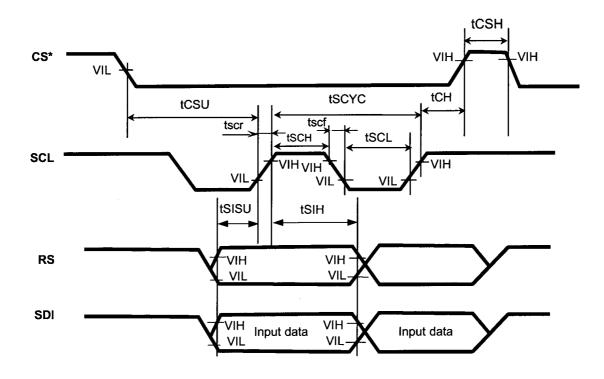


80-system Bus interface Timing Characteristics

Clock Synchronized Serial Interface Timing Characteristics (Three lines system)

 $(Ta=25^{\circ}C \ VCC = 2.4~3.6V)$

Item	Symbol	Conditions	MIN	MAX	Unit
Serial clock cycle time	t _{SCYC}		0.1	20	us
Serial clock high-level pulse width	t _{sch}		40	-	ns
Serial clock low-level pulse width	t _{SCL}		40	-	ns
Serial clock rise/fall time	$t_{scr,} t_{scf}$		-	20	ns
Chip select set up time	t _{csu}		20	-	ns
Chip select hold time	t _{CH}		200	ı	ns
Serial input data set up time	t _{SISU}		40	-	ns
Serial input data hold time	t _{SIH}		40	-	ns
Chip select high-level pulse	t _{CSH}		100	-	ns



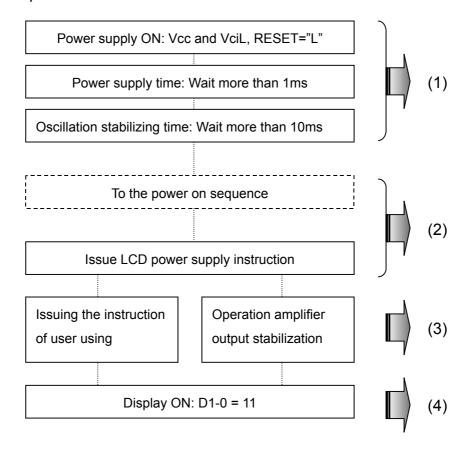
Clock Synchronized Serial Interface Timing Characteristics

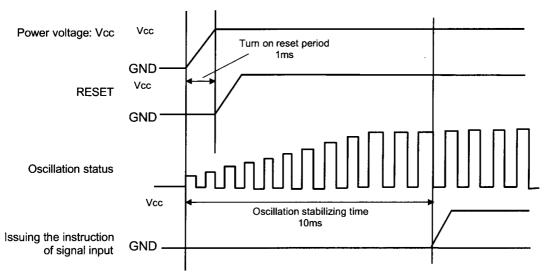
Clock Synchronized Serial Interface Timing Characteristics (Four lines system)

 $(Ta=25^{\circ}C \ VCC = 2.4~3.6V)$

Item	Symbol	Conditions	MIN	MAX	Unit
Serial clock cycle time	t _{SCYC}		0.1	20	us
Serial clock high-level pulse width	t _{sch}		40	-	ns
Serial clock low-level pulse width	t _{SCL}		40	-	ns
Serial clock rise/fall time	$t_{scr,} t_{scf}$		-	20	ns
Chip select set up time	t _{csu}		20	-	ns
Chip select hold time	t _{CH}		200	ı	ns
Serial input data set up time	t _{SISU}		40	-	ns
Serial input data hold time	t _{SIH}		40	-	ns
Chip select high-level pulse	t _{CSH}		100	-	ns

Clock Synchronized Serial Interface Timing Characteristics


9 Timing Characteristics


				Ur	per Co	de					1			Lo	ower Co	ode				l
Register No.	Register	R/W	RS	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	DB	Executing cycle
				15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	<u> </u>
IR	Index	0	0	*	*	*	*	*	*	*	*	*	ID6	ID5	ID4	ID3	ID2	ID1	ID0	0
SR	Status read	1	0	L7	L6	L5	L4	L3	L2	LI	L0	0	C6	C5	C4	C3	C2	Cl	C0	0
R00h	Oscillation start Device code read	0	1 1	*	*	*	*	*	*	*	*	*	*	*	*	0	*	*	0	10ms 0
R01h	Driver output control	0	1	0	0	0	0	0	CSFT	CMS	SGS	0	0	4L	NL4	NL3	NL2	NL1	NL0	0
R02h	LCD opearating alternation control	0	1	0	0	0	0	0	RST	B/C	EOR	0	0	NW5	NW4	NW3	NW2	NWI	NW0	0
R03h	Power control (1)	0	1	0	0	BS2	BSI	BS0	0	BTI	вто	DC2	DC1	DC0	AP2	API	AP0	SLP	STB	0
R04h	Contrast control	0	1	0	0	VRC NT	VR4	VR3	VR2	VR1	VR0	VRO N	СТ6	CT5	CT4	СТЗ	CT2	CTI	СТ0	0
R05h	Entry mode	0	1	SPR1	SPR0	0	0	0	0	HW M	0	0	0	I/D1	I/D0	AM	LG2	LGI	LG0	0
R06h	Conpare resistor	0	1	CP15	CP14	CP13	CP12	CP11	CP10	CP9	CP8	CP7	CP6	CP5	CP4	CP3	CP2	CP1	CP0	0
R07h	Display control	0	1	0	0	0	0	0	VLE2	VLE 1	SPT	0	0	0	0	B/W	REV	DI	D0	0
R08h	Flame cycle control	0	1	0	0	0	0	0	0	DIVI	DIV0	0	0	0	0	RTN 3	RTN 2	RTN 1	RTN 0	0
R0Ch	Power control (2)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	VC2	VCI	VC0	0
Rllh	Vertical scroll control	0	1	VL 27	VL 26	VL 25	VL 24	VL 23	VL 22	VL 21	VL 20	VL 17	VL 16	VL 15	VL 14	VL 13	VL 12	VL 11	VL 10	0
R14h	First screen operating position	0	1	SE 17	SE 16	SE 15	SE 14	SE 13	SE 12	SE 11	SE 10	SS 17	SS 16	SS 15	SS 14	SS 13	SS 12	SS 11	SS 10	0
R15h	Second screen operating position	0	1	SE 27	SE 26	SE 25	SE 24	SE 23	SE 22	SE 21	SE 20	SS 27	SS 26	SS 25	SS 24	SS 23	SS 22	SS 21	SS 20	0
R16h	Horizontal RAM address position	0	1	HEA 7	HEA 6	HEA 5	HEA 4	HEA 3	HEA 2	HEA 1	HEA 0	HAS 7	HAS 6	HSA 5	HAS 4	HAS 3	HAS 2	HAS 1	HAS 0	0
R17h	Vertical RAM address position	0	1	VEA 7	VEA 6	VEA 5	VEA 4	VEA 3	VEA 2	VEA 1	VEA 0	VSA 7	VSA 6	VSA 5	VSA 4	VSA 3	VSA 2	VSA 1	VSA 0	0
R20h	RAM write data mask	0	1	WM 15	WM 14	WM 13	WM 12	WM 11	WM 10	WM 9	WM 8	WM 7	WM 6	WM 5	WM 4	WM 3	WM	WM 1	WM 0	0
R21h	RAM address set	0	1					(Upper		,	Ü				A	D7-0 (I	Lower)			
Daah	RAM data write	0	1			V	Vrite Da	ta (Uppe	r)			Wrtie Data (Lower)								
R22h	RAM data read	0	1			R	ead Da	ta (Uppe	r)			Read Data (Lower)								
R30h	Grayscale palette control (1)	0	1	0	0	0	PK 14	PK 13	PK 12	PK 11	PK 10	0	0	0	PK 04	PK 03	PK 02	PK 01	PK 00	0
R31h	Grayscale palette control (2)	0	i	0	0	0	PK. 34	PK 33	PK 32	PK 31	PK. 30	0	0	0	PK. 24	PK. 23	PK 22	PK 21	PK 20	0
R32h	Grayscale palette control (3)	0	ı	0	0	0	PK 54	PK 53	PK 52	PK 51	PK 50	0	0	0	PK 44	PK 43	PK 42	PK 41	PK. 40	0
R33h	Grayscale palette control (4)	0	1	0	0	0	PK 74	PK 73	PK 72	PK 71	PK 70	0	0	0	PK. 64	PK 63	PK 62	PK 61	PK 60	0
R34h	Grayscale palette control (5)	0	1	0	0	0	PK 94	PK 93	PK 92	PK 91	PK 90	0	0	0	PK 84	PK 83	PK 82	PK 81	PK 80	0
R35h	Grayscale palette control (6)	0	1	0	0	0	PK 114	PK 113	PK 112	PK 111	PK 110	0	0	0	PK 104	PK 103	PK 102	PK 101	PK 100	0
R36h	Graysacle palette control (7)	0	1	0	0	0	PK 134	PK 133	PK 132	PK 131	PK 130	0	0	0	PK 124	PK 123	PK 122	PK 121	PK 120	0
	Grayscale palette			0	0	0	PK	PK	PK	PK	PK	0	0	0	PK 144	PK 143	PK 142	PK 141	PK 140	0
R37h R40h	control (8) E2PROM interface	0/1	1	0	0	0	154 TE	153 0	152 0	151 OP1	150 OP0	0	0	A5	A4	143 A3	A2	Al	A0	0
R41h	control (1) E2PROM interface control (2)	0	1	TD	TD	TD	TD	TD	TD	TD 9	TD	TD 7	TD	TD	TD	TD 3	TD 2	TD	TD 0	0
R42h	E2PROM interface control (3)	0	1	15 0	0	13 0	0	0	10 0	0	8 DPM	IDX 7	6 IDX 6	5 IDX 5	IDX 4	IDX 3	IDX 2	IDX 1	IDX 0	0

10 POWER ON/OFF SEQUENCE

10-1 Power ON Sequence

Date: 2003/5/8

Note: When hardware reset is input during the power-off period, the D1-0 bits are cleared to "00" and SEG/COM output is forcibly lowered to the GND levels.

- (1) Reset and power ON
 - Power (VCC) ON by holding reset as low-level. (a)
 - Wait till power will be stabilize: more than 1 msec. (b)
 - (c) Set 'RESET' terminal to high-level.
 - (d) Start oscillation: R00h=0001h;
 - (e) Wait time more than 10 msec for stabilizing the oscillation
- (2) Power setting
 - (a) Power control 1

R03h=128Ch; BS2-0=010(1/9Bias),

BT1-0=10 (Vci1x2, Vci2x2.5)

DC2-0=100 (Boost1:16-divided clock, Boost2=32-divided clock)

AP2-0=011(Boost1,2=100%)

SLP=0(No sleep mode), STB=0(No sleep mode)

(b) Power Control 2

R0Ch=0000h; VC2-0=000 (Vci1=1.00xVcc),

(c) Contrast Control

R04h=1AE0h; VRCNT=0 (Connecting to an external thermistor circuit),

VR4-0=11010 (VREFH=VREFL x 7.5) VRON=1 (Internal reference voltage)

CT6-0=1100000

- (3) Mode setting
 - (a) Driver output control

R01h=0207h; CSFT=0,CMS=0 (COM84 \rightarrow COM83 \rightarrow COM82 \rightarrow ... \rightarrow COM21),

SGS (Segment driver direction: SEG1 to SEG288)

4L=0

NL4-0=00111 (1/64 Duty)

(b) LCD Driving waveform control

R02h=0000h; RST=0 (No reset).

B/C=0 (B pattern waveform) ,EOR=0 ,NW5-0=0

(c) Entry Mode

R05h=0230h; SPR1-0=00 (65,000 colors display),

HWM=1 (High speed), I/D1-0=11(Horizontal: increment, Vertical: increment)

LG2-0=000 (Write mode)

(d) Compare resistor

R06h=0000h CP15-0=0000h

(e) Frame cycle control

R0Bh=0000h DIV1-0=00 (fosc/1),

RTN3-0=0000 (25+0 clock)

(f) 1st screen driving position

R14h=5300h SE17-10=53h, SS17-10=00h (COM1-84) (g) Horizontal RAM address position R16h=5F00h

HEA7-0=5Fh (End address:SEG95)

HSA7-0=00h (Start address:SEG0)

(h) Vertical RAM address position

R17h=3F00h VEA7-0=3Fh (End address:COM63)

VSA7-0=00h (Start address:COM0)

(i) RAM write data mask

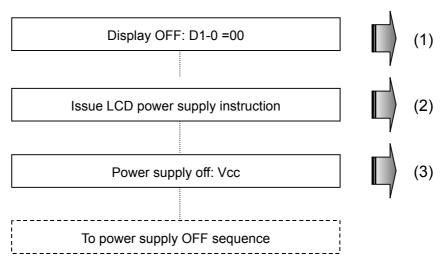
R20h=0000h WM15-0=0000h (No mask)

(j) Display control

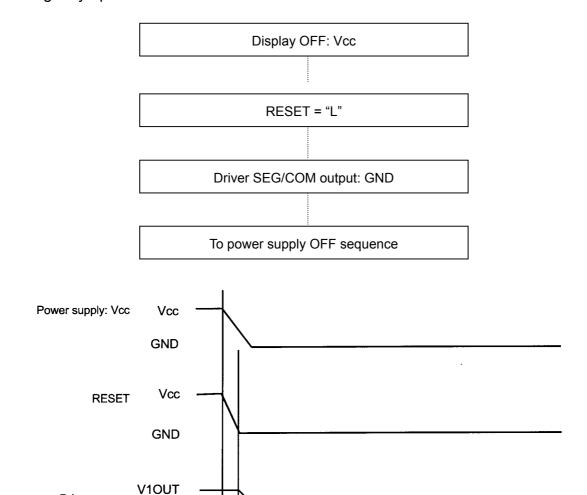
R07h=0002h VLE2-1=00h (No scroll)

SPT=0 (No screen division)

B/W=0, REV=0 (No all pixel on or off)


(4) Display ON

(a) Display control


R07h=0003h D1-0=11 (Display ON)

10-2 Power OFF Sequence

Normal operation

Emergency operation

Note: When executing hardware reset while power supply is off, D1-0 bit bemoces "00" at the timing of reaet. Output level of SEG/COM is force to be set to GND level.

(1) Display OFF

Driver SEG/COM output

GND

R07h=0000h

D1-0=00 (Display OFF)

(2) Power control

R03h=1280h

BS2-0=010(1/9Bias),

BT1-0=10 (Vci1x2, Vci2x2.5)

DC2-0=100 (Boost1:16-divided clock,Boost2=32-divided clock)

AP2-0=000(Amplifier do not operate)

SLP=0(No sleep mode), STB=0(No sleep mode)

(3) Power supply OFF

11 Use precautions

11-1 Handling precautions

- 1) The polarizing plate may break easily so be careful when handling it. Do not touch, press or rub it with a hard-material tool like tweezers.
- 2) Do not touch the polarizing plate surface with bare hands so as not to make it dirty. If the surface or other related part of the polarizing plate is dirty, soak a soft cotton cloth or chamois leather in benzine and wipe off with it. Do not use chemical liquids such as acetone, toluene and isopropyl alcohol. Failure to do so may bring chemical reaction phenomena and deteriorations.
- 3) Remove any spit or water immediately. If it is left for hours, the suffered part may deform or decolorize.
- 4) If the LCD element breaks and any LC stuff leaks, do not suck or lick it. Also if LC stuff is stuck on your skin or clothing, wash thoroughly with soap and water immediately.

11-2 Installing precautions

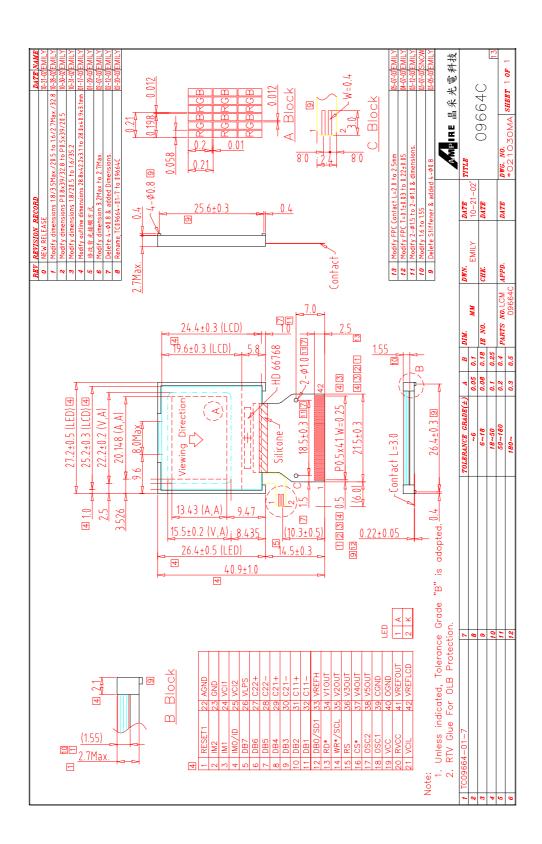
- 1) The PCB has many ICs that may be damaged easily by static electricity. To prevent breaking by static electricity from the human body and clothing, earth the human body properly using the high resistance and discharge static electricity during the operation. In this case, however, the resistance value should be approx. $1M\Omega$ and the resistance should be placed near the human body rather than the ground surface. When the indoor space is dry, static electricity may occur easily so be careful. We recommend the indoor space should be kept with humidity of 60% or more. When a soldering iron or other similar tool is used for assembly, be sure to earth it.
- 2) When installing the module and ICs, do not bend or twist them. Failure to do so may crack LC element and cause circuit failure.
- 3) To protect LC element, especially polarizing plate, use a transparent protective plate (e.g., acrylic plate, glass etc) for the product case.
- 4) Do not use an adhesive like a both-side adhesive tape to make LCD surface (polarizing plate) and product case stick together. Failure to do so may cause the polarizing plate to peel off.

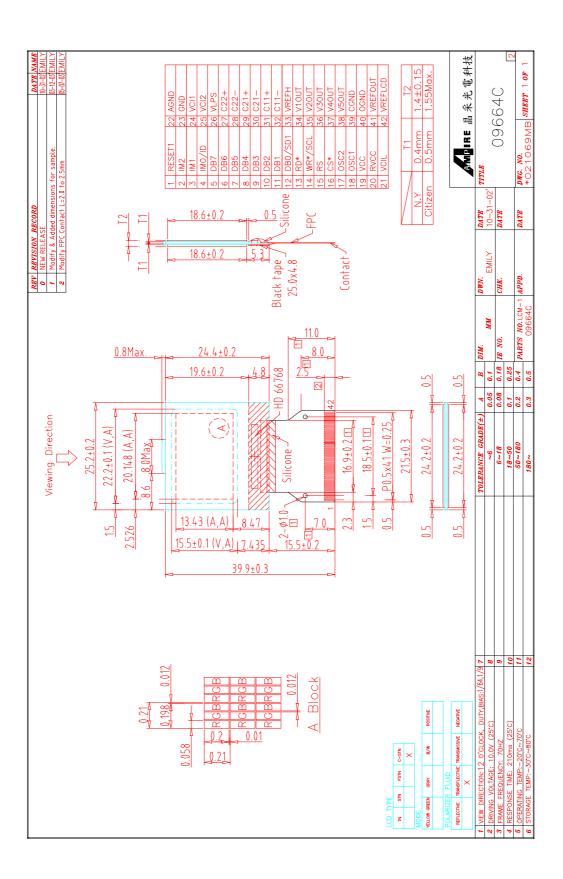
21

11-3 Storage precautions

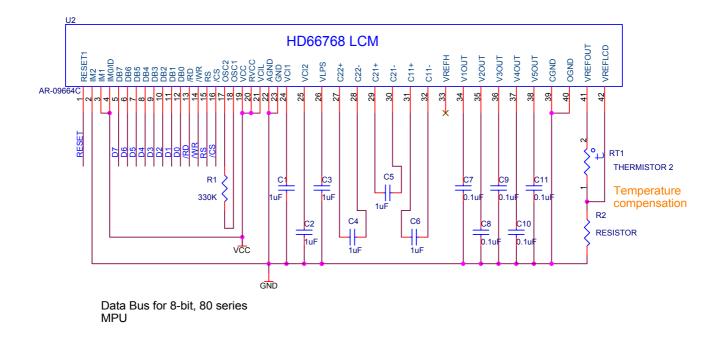
- 1) Avoid a high temperature and humidity area. Keep the temperature between 0°C and 35°C and also the humidity under 60%.
- 2) Choose the dark spaces where the product is not exposed to direct sunlight or fluorescent light.
- 3) Store the products as they are put in the boxes provided from us or in the same conditions as we recommend.

11-4 Operating precautions


- 1) Do not boost the applied drive voltage abnormally. Failure to do so may break ICs. When applying power voltage, check the electrical features beforehand and be careful. Always turn off the power to the LC module controller before removing or inserting the LC module input connector. If the input connector is removed or inserted while the power is turned on, the LC module internal circuit may break.
- 2) The display response may be late if the operating temperature is under the normal standard, and the display may be out of order if it is above the normal standard. But this is not a failure; this will be restored if it is within the normal standard.
- 3) The LCD contrast varies depending on the visual angle, ambient temperature, power voltage etc. Obtain the optimum contrast by adjusting the LC dive voltage.
- 4) When carrying out the test, do not take the module out of the low-temperature space suddenly. Failure to do so will cause the module condensing, leading to malfunctions.
- 5) Make certain that each signal noise level is within the standard (L level: 0.2Vdd or less and H level: 0.8Vdd or more) even if the module has functioned properly. If it is beyond the standard, the module may often malfunction. In addition, always connect the module when making noise level measurements.
- 6) The CMOS ICs are incorporated in the module and the pull-up and pull-down function is not adopted for the input so avoid putting the input signal open while the power is ON.


- 7) The characteristic of the semiconductor element changes when it is exposed to light emissions, therefore ICs on the LCD may malfunction if they receive light emissions. To prevent these malfunctions, design and assemble ICs so that they are shielded from light emissions.
- 8) Crosstalk occurs because of characteristics of the LCD. In general, crosstalk occurs when the regularized display is maintained. Also, crosstalk is affected by the LCD drive voltage. Design the contents of the display, considering crosstalk.

11-5 Other


- 1) Do not disassemble or take the LC module into pieces. The LC modules once disassembled or taken into pieces are not the guarantee articles.
- 2) The residual image may exist if the same display pattern is shown for hours. This residual image, however, disappears when another display pattern is shown or the drive is interrupted and left for a while. But this is not a problem on reliability.

12 OUTLINE DIMENSION

13 APPLICATION CIRCUIT

SAFETY CA	AUTIONS Strictly observe the following
WARNING	 Always turn off the power when installing or removing this product. Otherwise, you may get an electrical shock.
	Do not cover this product with paper or cloth or make it approach to flammable. Failure to do so may cause fire.
	Do not fall, hit, force or damage this product. Failure to do so may cause injury.
CAUTION	When handling this product, keep it away from water and oil and do not handle with dirty hands or gloves. Failure to do so may cause breakage.
	Do not paint this product. Failure to do so may lead to overheat.
	 Do not use this product in rain and water dropping and high humidity spaces. Failure to do so may cause breakage.

27

Request and notice about the contents of the descriptions in these product specifications and the use of the products

- (1). If the products described in these product specifications are applicable to the article "Foreign Exchange and Foreign Trade Control Act," they must receive permission by the Japanese Government when they are exported or taken overseas.
- (2). The products are intended for general applications general electronic equipment (such as office equipment, communication equipment, measurement equipment and home appliances). If the special quality and reliability are required and the special applications (aircraft and space equipment, traffic-control equipment, combustion equipment, life-maintaining equipment, safety equipment etc) are planned there is the possibility of danger that the human life will be threatened and the human body will be harmed when equipment breakdown or erroneous operation occurs or any idea of use other than general applications is conceived, the customer shall be requested to ask us for this matter in advance.
- (3). When developing the design, keep the spec items within the guarantee range such as the maximum ratings, operating power voltage and radiations. If adopted beyond the guarantee range, we will not be liable for any equipment failure resulting from the use of the improper quality product.