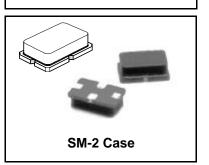


- Ideal for 418 MHz Superhet Receivers in the U.K. and U.S.
- Very Low Series Resistance
- **Quartz Stability**
- Surface-Mount, Ceramic Case with 21 mm² Footprint


The RO2115A is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount, ceramic case. It provides reliable, fundamental-mode, quartz frequency stabilization of local oscillators operating at 417.5 MHz. This SAW is designed for 418 MHz superhet receivers with 500 kHz IF (Philips UAA3201T). Applications inlude remote-control and wireless security receivers operating in the United Kingdom under DTI MPT 1340 and in the USA under FCC Part 15.

Absolute Maximum Ratings

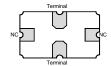
7 10-0-10-10-10-10-10-10-10-10-10-10-10-10							
Rating	Value	Units					
CW RF Power Dissipation (See Typical Test Circuit)	+0	dBm					
DC Voltage Between Terminals (Observe ESD Precautions)	±30	VDC					
Case Temperature	-40 to +85	°C					
Soldering Temperature	+250	°C					

RO2115A

417.5 MHz SAW Resonator

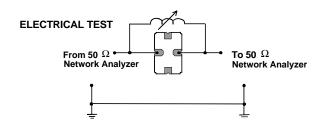
Electrical Characteristics

Ch	aracteristic	Sym	Notes	Minimum	Typical	Maximum	Units
Center Frequency (+25 °C)	Absolute Frequency	f _C	2, 3, 4, 5	417.425		417.575	MHz
	Tolerance from 417.500 MHz	Δf_{C}	2, 3, 4, 3			±75	kHz
Insertion Loss		IL	2, 5, 6		0.8	1.5	dB
Quality Factor	Unloaded Q	Q _U	5, 6, 7		13,700		
	50 Ω Loaded Q	Q_L	3, 0, 1		1,200		
Temperature Stability	Turnover Temperature	T _O		10	25	40	°C
	Turnover Frequency	f _O	6, 7, 8		f _C		
	Frequency Temperature Coefficient	FTC			0.032		ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f _A	1		≤10		ppm/yr
DC Insulation Resistance between Any Two Terminals			5	1.0			MΩ
RF Equivalent RLC Model	Motional Resistance	R_{M}			10	19	Ω
	Motional Inductance	L _M	5, 7, 9		49.4334		μH
	Motional Capacitance	C _M			2.93972		fF
	Transducer Static Capacitance	Co	5, 6, 9	2.1	2.4	2.7	pF
Test Fixture Shunt Inductance		L _{TEST}	2, 7		60		nH
Lid Symbolization		104					

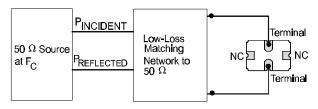

CAUTION: Electrostatic Sensitive Device. Observe precautions for handling. Notes:

- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2. The center frequency, f_C, is measured at the minimum insertion loss point, IL_{MIN}, with the resonator in the 50 Ω test system (VSWR \leq 1.2:1). The shunt inductance, L_{TEST}, is tuned for parallel resonance with C_O at f_C. Typically, $f_{\mbox{\scriptsize OSCILLATOR}}$ or $f_{\mbox{\scriptsize TRANSMITTER}}$ is approximately equal to the resonator $f_{\mbox{\scriptsize C}}$.
- 3. One or more of the following United States patents apply: 4,454,488 and 4,616,197.
- 4. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer. Unless noted otherwise, case temperature $T_C = +25^{\circ}C \pm 2^{\circ}C$.
- 5.
- The design, manufacturing process, and specifications of this device are sub-6. iect to change without notice.
- 7 Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C_O.

- Turnover temperature, T_O, is the temperature of maximum (or turnover) frequency, f_O. The nominal frequency at any case temperature, T_C, may be calculated from: $f = f_O [1 - FTC (T_O - T_C)^2]$. Typically, oscillator T_O is approximately equal to the specified resonator T_O.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance Co is the static (nonmotional) capacitance between the two terminals measured at low frequency (10 MHz) with a capacitance meter. The measurement includes parasitic capacitance with "NC" pads unconnected. Case parasitic capacitance is approximately 0.05 pF. Transducer parallel capacitance can be calculated as: $C_P \approx C_O - 0.05 \text{ pF}.$
- Packaged in 500PC Tape carrier.

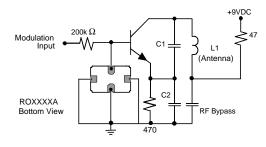

Electrical Connections

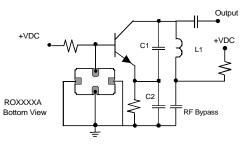
The SAW resonator is bidirectional and may be installed with either orientation. The two terminals are interchangeable and unnumbered. The callout NC indicates no internal connection. The NC pads assist with mechanical positioning and stability. External grounding of the NC pads is recommended to help reduce parasitic capacitance in the circuit.



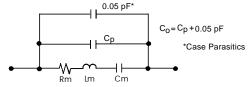
Typical Test Circuit

The test circuit inductor, L_{TEST} , is tuned to resonate with the static capacitance, C_{O} , at F_{C} .

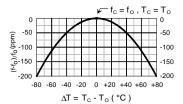

POWER TEST


CW RF Power Dissipation = PINCIDENT - PREFLECTED

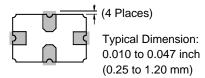
Typical Application Circuits


Typical Low-Power Transmitter Application

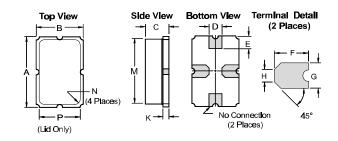
Typical Local Oscillator Application



Equivalent LC Model


Temperature Characteristics

The curve shown on the right accounts for resonator contribution only and does not include LC component temperature contributions.


Typical Circuit Board Land Pattern

The circuit board land pattern shown below is one possible design. The optimum land pattern is dependent on the circuit board assembly process which varies by manufacturer. The distance between adjacent land edges should be at a maximum to minimize parasitic capacitance. Trace lengths from terminal lands to other components should be short and wide to minimize parasitic series inductances.

Case Design

The case material is black alumina with contrasting symbolization. All pads are nominally centered with respect to the base and consist of 60 to 100 microinches (min) electroless gold on 50 microinches (min) electroless nickel.

Dimensions	Millimeters		Inches		
	Min	Max	Min	Max	
А		5.97		0.235	
В		3.94		0.155	
С		2.16		0.085	
D	0.94	1.10	0.037	0.043	
E	0.83	1.20	0.033	0.047	
F	1.16	1.53	0.046	0.060	
G	0.94	1.10	0.037	0.043	
Н	0.43	0.59	0.017	0.023	
K	0.43	0.59	0.017	0.023	
М		5.31		0.209	
N	0.38	0.64	0.015	0.025	
Р		3.28		0.129	